Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 351
Filter
1.
Ophthalmic Res ; 2024 May 08.
Article in English | MEDLINE | ID: mdl-38718781

ABSTRACT

INTRODUCTION: Retinitis pigmentosa (RP) is a chronic progressive disease causing loss of visual acuity and ultimately blindness. This visual impairment can contribute to psychiatric comorbidity and worse overall quality of life (QOL). Our goal was to assess the relationship between the severity of disease for people with RP and QOL as it pertains to mental health, social support, disability resources, and financial factors. METHODS: This was a survey study conducted from June 2021 to February 2022 including 38 people with RP. Quality of life was assessed through a survey questionnaire focusing specifically on demographics, visual function, family, employment, social support, and mental health/well-being. Statistical analysis was conducted using a Chi-squared test for significance. RESULTS: A best-corrected visual acuity (BCVA) of less than 20/200 (p= 0.0285) and living alone (p=0.0358) were both statistically significant independent risk factors for experiencing depressive symptoms. Highest education level attained and unemployment rate were not found to be related to the development of depressive symptoms. Subjects had a higher unemployment rate (64% vs. US rate of 3.6%) and a high likelihood of reporting depressive symptoms (47.4%). CONCLUSIONS: People with RP are more likely to be unemployed and to develop depressive symptoms when compared to the general population. Similar to previous studies' findings, those with a BCVA of less than 20/200 were statistically more likely to experience depressive symptoms; living alone is a novel risk factor that is also associated with the presence of depressive symptoms. Contrary to prior findings, highest education level and unemployment status were found not to be related to the development of depressive symptoms. These patients may benefit from regular depression screenings and optional establishment of care with a psychiatrist or psychologist if they live alone or their BCVA is 20/200 or worse.

2.
Int J Nanomedicine ; 19: 3827-3846, 2024.
Article in English | MEDLINE | ID: mdl-38708180

ABSTRACT

Background: New treatment modalities for hepatocellular carcinoma (HCC) are desperately critically needed, given the lack of specificity, severe side effects, and drug resistance with single chemotherapy. Engineered bacteria can target and accumulate in tumor tissues, induce an immune response, and act as drug delivery vehicles. However, conventional bacterial therapy has limitations, such as drug loading capacity and difficult cargo release, resulting in inadequate therapeutic outcomes. Synthetic biotechnology can enhance the precision and efficacy of bacteria-based delivery systems. This enables the selective release of therapeutic payloads in vivo. Methods: In this study, we constructed a non-pathogenic Escherichia coli (E. coli) with a synchronized lysis circuit as both a drug/gene delivery vehicle and an in-situ (hepatitis B surface antigen) Ag (ASEc) producer. Polyethylene glycol (CHO-PEG2000-CHO)-poly(ethyleneimine) (PEI25k)-citraconic anhydride (CA)-doxorubicin (DOX) nanoparticles loaded with plasmid encoded human sulfatase 1 (hsulf-1) enzyme (PNPs) were anchored on the surface of ASEc (ASEc@PNPs). The composites were synthesized and characterized. The in vitro and in vivo anti-tumor effect of ASEc@PNPs was tested in HepG2 cell lines and a mouse subcutaneous tumor model. Results: The results demonstrated that upon intravenous injection into tumor-bearing mice, ASEc can actively target and colonise tumor sites. The lytic genes to achieve blast and concentrated release of Ag significantly increased cytokine secretion and the intratumoral infiltration of CD4/CD8+T cells, initiated a specific immune response. Simultaneously, the PNPs system releases hsulf-1 and DOX into the tumor cell resulting in rapid tumor regression and metastasis prevention. Conclusion: The novel drug delivery system significantly suppressed HCC in vivo with reduced side effects, indicating a potential strategy for clinical HCC therapy.


Subject(s)
Carcinoma, Hepatocellular , Doxorubicin , Escherichia coli , Liver Neoplasms , Animals , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/therapy , Liver Neoplasms/drug therapy , Liver Neoplasms/therapy , Humans , Doxorubicin/pharmacology , Doxorubicin/chemistry , Doxorubicin/administration & dosage , Hep G2 Cells , Mice , Escherichia coli/drug effects , Hepatitis B Surface Antigens , Sulfotransferases/genetics , Nanoparticles/chemistry , Mice, Inbred BALB C , Drug Delivery Systems/methods , Xenograft Model Antitumor Assays
3.
Adv Mater ; : e2402379, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38655900

ABSTRACT

Circulating tumor cells (CTCs) detection presents significant advantages in diagnosing liver cancer due to its noninvasiveness, real-time monitoring, and dynamic tracking. However, the clinical application of CTCs-based diagnosis is largely limited by the challenges of capturing low-abundance CTCs within a complex blood environment while ensuring them alive. Here, an ultrastrong ligand, l-histidine-l-histidine (HH), specifically targeting sialylated glycans on the surface of CTCs, is designed. Furthermore, HH is integrated into a cell-imprinted polymer, constructing a hydrogel with precise CTCs imprinting, high elasticity, satisfactory blood compatibility, and robust anti-interference capacities. These features endow the hydrogel with excellent capture efficiency (>95%) for CTCs in peripheral blood, as well as the ability to release CTCs controllably and alive. Clinical tests substantiate the accurate differentiation between liver cancer, cirrhosis, and healthy groups using this method. The remarkable diagnostic accuracy (94%), lossless release of CTCs, material reversibility, and cost-effectiveness ($6.68 per sample) make the HH-based hydrogel a potentially revolutionary technology for liver cancer diagnosis and single-cell analysis.

4.
Colloids Surf B Biointerfaces ; 238: 113915, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38631281

ABSTRACT

Hydrogels have emerged as a new type of wound dressing materials that involved in different stages of the healing processes. However, most of the existing wound dressings mainly offer a protective and moisturizing layer to prevent cross-infection, while the anti-inflammatory and anti-oxidative properties are frequently induced by extra addition of other bioactive molecules. Here, a novel type of sulfated glyco-functionalized hydrogels for wound dressing was prepared through the hybrid supramolecular co-assembly of carbohydrate segments (FG, FGS and FG3S), fluorenylmethoxycarbonyl-diphenylalanine (Fmoc-FF), and diphenylalanine-dopamine (FFD). Implanting sulfated carbohydrates can mimic the structure of glycosaminoglycans (GAGs), promoting cell proliferation and migration, along with anti-inflammatory effects. In situ polymerization of FFD introduced a secondary covalent network to the hydrogel, meanwhile, providing anti-oxidation and adhesion properties to wound surfaces. Furthermore, the dynamic supramolecular interactions within the hydrogels also confer self-healing capabilities to the wound dressing materials. In vivo experiments further demonstrated significantly accelerated healing rates with the multifunctional hydrogel FG3S-FFD, indicating high application potential.


Subject(s)
Anti-Inflammatory Agents , Bandages , Hydrogels , Wound Healing , Wound Healing/drug effects , Hydrogels/chemistry , Hydrogels/pharmacology , Hydrogels/chemical synthesis , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Animals , Mice , Cell Proliferation/drug effects , Humans , Sulfates/chemistry , Sulfates/pharmacology , Adhesives/chemistry , Adhesives/pharmacology , Cell Movement/drug effects , Male
5.
Sci Rep ; 14(1): 7710, 2024 04 02.
Article in English | MEDLINE | ID: mdl-38565579

ABSTRACT

Alzheimer's Disease (AD) is a progressive neurodegenerative disease and the leading cause of dementia. Early diagnosis is critical for patients to benefit from potential intervention and treatment. The retina has emerged as a plausible diagnostic site for AD detection owing to its anatomical connection with the brain. However, existing AI models for this purpose have yet to provide a rational explanation behind their decisions and have not been able to infer the stage of the disease's progression. Along this direction, we propose a novel model-agnostic explainable-AI framework, called Granu la ̲ r Neuron-le v ̲ el Expl a ̲ iner (LAVA), an interpretation prototype that probes into intermediate layers of the Convolutional Neural Network (CNN) models to directly assess the continuum of AD from the retinal imaging without the need for longitudinal or clinical evaluations. This innovative approach aims to validate retinal vasculature as a biomarker and diagnostic modality for evaluating Alzheimer's Disease. Leveraged UK Biobank cognitive tests and vascular morphological features demonstrate significant promise and effectiveness of LAVA in identifying AD stages across the progression continuum.


Subject(s)
Alzheimer Disease , Neurodegenerative Diseases , Humans , Alzheimer Disease/diagnostic imaging , Fundus Oculi , Retina/diagnostic imaging , Neurons , Magnetic Resonance Imaging
6.
Adv Healthc Mater ; : e2304000, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38502033

ABSTRACT

Metal ions have attracted a lot of interest in antitumor therapy due to their unique mechanism of action. However, multiple death mechanisms associate with metal ions to synergistic antitumors have few studies mainly due to the serious challenges in designing and building metal-associated multimodal treatment platforms. Hence, a series of glutathione-activatable CaCu-based metal-organic-frameworks loaded with doxorubicin and ovalbumin are successfully designed and synthesized with an "all in one" strategy, which is modified by galactosamine-linked hyaluronic acid to prepare multimodal treatment platform (SCC/DOX@OVA-HG) for targeted delivery and synergistic antitumor therapy. SCC/DOX@OVA-HG can be rapidly degraded by the overexpressed glutathione and then releases the "cargoes" in the tumor microenvironment. The released Cu+ efficiently catalyzes H2O2 to produce highly toxic ROS for CDT, and the up-regulation of calcium ion concentration in tumor cells induced by the released Ca2+ enables calcium overload therapy, which synergically enhances the metal-related death pattern. Meanwhile, OVA combined with Ca2+/Cu2+ further activates macrophages into an M1-like phenotype to accelerate tumor cell death through immunotherapy. Besides, the released DOX can also insert into the DNA double helix for chemotherapy. Consequently, the developed SCC/DOX@OVA-HG reveals significantly improved antitumor efficacy through a multimodal synergistic therapy of chemotherapy, chemodynamic therapy, calcium overload, and immunotherapy.

7.
Cancer Lett ; 588: 216778, 2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38458593

ABSTRACT

This study aims to investigate applicable robust biomarkers that can improve prognostic predictions for colorectal liver metastasis (CRLM) patients receiving simultaneous resection. A total of 1323 CRLM patients from multiple centres were included. The preoperative aspartate aminotransferase to platelet ratio index (APRI) level from blood of patients were obtained. Patients were stratified into a high APRI group and a low APRI group, and comparisons were conducted by analyzing progression-free survival (PFS), overall survival (OS) and postoperative early recurrence. Tumour samples of CRLM were collected to perform single-cell RNA sequencing and multiplex immunohistochemistry/immunofluorescence (mIHC/IF) to investigate the association of APRI levels and the tumour microenvironment of CRLM. Compared with APRI <0.33, PFS disadvantage (IPTW-adjusted HR = 1.240, P = 0.015) and OS disadvantage (IPTW- adjusted HR = 1.507, P = 0.002) of APRI ≥0.33 were preserved in the IPTW-adjusted Cox hazards regression analyses. An APRI ≥0.25 was associated with a significantly increased risk of postoperative early recurrence after adjustment (IPTW-adjusted OR = 1.486, P = 0.001). The external validation showed consistent results with the training cohort. In the high APRI group, the single-cell RNA sequencing results revealed a heightened malignancy of epithelial cells, the enrichment of inflammatory-like cancer-associated fibroblasts and SPP1+ macrophages associated with activation of malignant cells and fibrotic microenvironment, and a more suppressed-function T cells; mIHC/IF showed that PD1+ CD4+ T cells, FOXP3+ CD4+ T cells, PD1+ CD8+ T cells, FOXP3+ CD8+ T cells, SPP1+ macrophages and iCAFs were significantly increased in the intratumoral region and peritumoral region. This study contributed valuable evidence regarding preoperative APRI for predicting prognoses among CRLM patients receiving simultaneous resection and provided underlying clues supporting the association between APRI and clinical outcomes by single-cell sequencing bioinformatics analysis and mIHC/IF.


Subject(s)
Colorectal Neoplasms , Liver Neoplasms , Humans , CD8-Positive T-Lymphocytes/pathology , Tumor Microenvironment , Hepatectomy/adverse effects , Platelet Count , Liver Neoplasms/pathology , Prognosis , Colorectal Neoplasms/pathology , Aspartate Aminotransferases , Forkhead Transcription Factors , Retrospective Studies
8.
Sci Adv ; 10(8): eadk7140, 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38394197

ABSTRACT

Acaryochloris marina is a unique cyanobacterium using chlorophyll d (Chl d) as its major pigment and thus can use far-red light for photosynthesis. Photosystem II (PSII) of A. marina associates with a number of prochlorophyte Chl-binding (Pcb) proteins to act as the light-harvesting system. We report here the cryo-electron microscopic structure of a PSII-Pcb megacomplex from A. marina at a 3.6-angstrom overall resolution and a 3.3-angstrom local resolution. The megacomplex is organized as a tetramer consisting of two PSII core dimers flanked by sixteen symmetrically related Pcb proteins, with a total molecular weight of 1.9 megadaltons. The structure reveals the detailed organization of PSII core consisting of 15 known protein subunits and an unknown subunit, the assembly of 4 Pcb antennas within each PSII monomer, and possible pathways of energy transfer within the megacomplex, providing deep insights into energy transfer and dissipation mechanisms within the PSII-Pcb megacomplex involved in far-red light utilization.


Subject(s)
Photosystem II Protein Complex , Prochlorophytes , Photosystem II Protein Complex/metabolism , Chlorophyll/metabolism , Photosynthesis
9.
Sci Rep ; 14(1): 3637, 2024 02 13.
Article in English | MEDLINE | ID: mdl-38351326

ABSTRACT

Parkinson's disease is the world's fastest-growing neurological disorder. Research to elucidate the mechanisms of Parkinson's disease and automate diagnostics would greatly improve the treatment of patients with Parkinson's disease. Current diagnostic methods are expensive and have limited availability. Considering the insidious and preclinical onset and progression of the disease, a desirable screening should be diagnostically accurate even before the onset of symptoms to allow medical interventions. We highlight retinal fundus imaging, often termed a window to the brain, as a diagnostic screening modality for Parkinson's disease. We conducted a systematic evaluation of conventional machine learning and deep learning techniques to classify Parkinson's disease from UK Biobank fundus imaging. Our results suggest Parkinson's disease individuals can be differentiated from age and gender-matched healthy subjects with 68% accuracy. This accuracy is maintained when predicting either prevalent or incident Parkinson's disease. Explainability and trustworthiness are enhanced by visual attribution maps of localized biomarkers and quantified metrics of model robustness to data perturbations.


Subject(s)
Deep Learning , Parkinson Disease , Humans , Parkinson Disease/diagnostic imaging , Parkinson Disease/epidemiology , UK Biobank , Biological Specimen Banks , Fundus Oculi
10.
Sci Total Environ ; 918: 170622, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38325490

ABSTRACT

In this study, the aerosol size distributions, cloud condensation nuclei (CCN) number concentration (NCCN), single-particle chemical composition and meteorological data were collected from May 12 to June 8, 2017, at the summit of Mt. Tai. The effects of new particle formation (NPF) events and aerosol chemical components on CCN at Mt. Tai were analyzed in detail. The results showed that, NPF events significantly enhanced the CCN population, and the enhancement effect increased with increasing supersaturation (SS) value at Mt.Tai. NCCN at SS ranging from 0.1 to 0.9 % on NPF days was 10.9 %, 36.5 %, 44.6 %, 53.5 % and 51.5 % higher than that on non-NPF days from 10:00-13:00 as NPF events progressed. The effect of chemical components on CCN activation under the influence of NPF events was greater than that in the absence of NPF events. The correlation coefficients of EC-Nitrate particles (EC-Sulfate particles) and CCN at all SS levels on NPF days were 1.31-1.59 times (1.17-1.35 times) higher than those on non-NPF days. Nitrate particles promoted CCN activation but sulfate particles inhibited activation at Mt. Tai. There are differences or even opposite effects of the same group of particles on CCN activation under the influence of NPF events in different air masses. EC-Sulfate particles inhibited CCN activation at all SS levels for type I but weakly promoted activation at lower SS ranging from 0.1 to 0.3 % and weakly inhibited it at higher 0.9 % SS for type II. OCEC particles significantly inhibited CCN activation for type II, and this effect decreased with increasing SS. OCEC particles only weakly inhibited activation at SS ranging from 0.5 to 0.7 % for type I. OCEC particles only weakly inhibited this process at 0.1 % SS, while they very weakly promoted activation for SS > 0.1 %. This reveals that the CCN activity is not only related to the chemical composition of the particles, but the mixing state also has an important effect on the CCN activity.

11.
Chemistry ; 30(17): e202304165, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38246871

ABSTRACT

A series of functional glycopolymer nanoparticles with 1,8-naphthalimide motif was designed, synthesized and applied for tumor cell imaging. With the pH-sensitive and aggregation-induced emission (AIE) effect of the 1,8-naphthalimide fluorescent probe, the presence of glucose-based glycopolymers enhanced its water-solubility and biocompatibility. Owing to the dual tumor-targeting effects of the dense glucose part and the boronic ester modification, the obtained glycopolymers showed high affinity to tumor cells, with a much faster staining rate than normal cells, indicating a great potential for diagnosis and treatments of cancers.


Subject(s)
Fluorescent Dyes , Nanoparticles , Naphthalimides , Diagnostic Imaging , Glucose
12.
Mol Biol Rep ; 51(1): 86, 2024 Jan 06.
Article in English | MEDLINE | ID: mdl-38183539

ABSTRACT

BACKGROUND: PD-1 blockade has shown impressive clinical outcomes in colorectal cancers patients with high microsatellite instability (MSI-H). However, the majority of patients with colorectal cancer who present low microsatellite instability (MSI-L) or stable microsatellites (MSS) show little response to PD-1 blockade therapy. Here, we have demonstrated that Shikonin (SK) could induce cell death of CT26 cells via classically programmed and immunogenic pathways. METHODS AND RESULTS: SK promoted the membrane exposure of calreticulin and upregulated the expression of heat shock protein 70 (Hsp70). The upregulation of Hsp70 was dependent on ROS induced by SK and silencing of PKM2 in CT26 cells reverts ROS upregulation. Besides, SK synergizes with PD-1 blockade in CT26 tumor mice model, with the increase of intramural DC cells and CD8+ T cells. The expression of Hsp70 in tumor tissue was also increased in combinational SK plus αPD-1 therapy group. CONCLUSIONS: Our study elucidated the potential role of 'Shikonin-PKM2-ROS-Hsp70' axis in the promotion of efficacy of PD-1 blockade in CRC treatments, providing a potential strategy and targets for improving the efficacy of PD-1 blockade in colorectal cancer.


Subject(s)
Colorectal Neoplasms , Microsatellite Instability , Humans , Animals , Mice , Programmed Cell Death 1 Receptor , Reactive Oxygen Species , Up-Regulation , HSP70 Heat-Shock Proteins/genetics , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics
13.
Quant Imaging Med Surg ; 14(1): 789-799, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38223090

ABSTRACT

Background: Ki-67 and human epidermal growth factor receptor 2 (HER2) are key biomarkers in evaluating the prognosis of colorectal adenocarcinoma (CRAC). The purpose of this study was to investigate the value of quantitative parameters in dual-layer spectral detector computed tomography (SDCT) for evaluating the expression of Ki-67 and HER2 in CRAC. Methods: In this retrospective, cross-sectional study, 88 eligible patients with pathologically confirmed CRAC were selected from Taicang Hospital of Traditional Chinese Medicine between May 2021 and April 2023. The study participants underwent enhanced SDCT of the whole abdomen within 2 weeks before to surgery, did not receive antitumor therapy, and had complete immunohistochemical (IHC) indexes. Patients with nonadenocarcinoma pathologic types, poor quality of spectral CT images, or no complete immunohistochemistry results were excluded. Spectral parameters including CT values at 40 and 100 keV, effective atomic number, iodine concentration (IC), the slope of the spectral Hounsfield unit (HU) curve (λHU), and normalized iodine concentration (NIC) in the arterial phase (AP) and venous phase (VP) were analyzed for their value in distinguishing between the high and low expression of Ki-67 and HER2-positive and -negative status in CRAC. The statistical significance of the SDCT parameters between the different groups of Ki-67 expression and those of HER2 status was assessed with the Mann-Whitney test. Spearman correlation analysis was used to analyze the correlation between the SDCT parameters and the extent of Ki-67 expression and HER2 expression status. The receiver operating characteristic (ROC) curve was used, and the area under the curve (AUC) was calculated. Results: The SDCT parameters of CT values at 40 keV, effective atomic number, IC, and the λHU in the VP showed significant differences between the Ki-67 high- and low-expression groups in CRAC (P=0.035, P=0.041, P=0.036, and P=0.044, respectively), with AUCs of 0.639 [95% confidence interval (CI): 0.512-0.766], 0.634 (95% CI: 0.508-0.761), 0.638 (95% CI: 0.510-0.766), and 0.633 (95% CI: 0.504-0.762), respectively. The expression of CRAC Ki-67 was positively correlated with CT values at 40 keV (r=0.227; P=0.034), effective atomic number (r=0.219; P=0.040), IC (r=0.225; P=0.035), and the λHU in VP (r=0.216; P=0.043). SDCT parameter values showed no statistical difference between negative and positive expression in HER2 (all P values >0.05). There was no significant correlation between SDCT parameters and the expression of HER2 in CRAC (all P values >0.05). Conclusions: The quantitative parameters of SDCT in the VP provide valuable information for distinguishing between the low expression and high expression of Ki-67 in CRAC.

14.
Sci Total Environ ; 917: 170438, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38286283

ABSTRACT

Uncertainty in methane (CH4) exchanges across wetlands and grasslands in the Qinghai-Tibetan Plateau (QTP) is projected to increase due to continuous permafrost degradation and asymmetrical seasonal warming. Temperature plays a vital role in regulating CH4 exchange, yet the seasonal patterns of temperature dependencies for CH4 fluxes over the wetlands and grasslands on the QTP remain poorly understood. Here, we demonstrated a stronger warming response of CH4 exchanges during the non-growing season compared to the growing season on the QTP. Analyzing 9745 daily observations and employing four methods -regression fitting of temperature-CH4 flux, temperature dependence calculations, field-based and model-based control experiments-we found that warming intensified CH4 emissions in wetlands and uptakes in grasslands. Specifically, the average reaction intensity in the non-growing season surpasses that in the growing season by 1.89 and 4.80 times, respectively. This stronger warming response of CH4 exchanges during the non-growing season significantly increases the regional CH4 exchange on the QTP. Our research reveals that CH4 exchanges in the QTP have a higher warming sensitivity in non-growing seasons, which meanwhile are dominated by a larger warming rate than the annual average. The combined effects of these two factors will significantly alter the CH4 source/sink on the QTP. Neglecting these impacts would lead to inaccurate estimations of CH4 source/sink over the QTP under climate warming.

15.
Hum Reprod ; 39(2): 364-373, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-37995380

ABSTRACT

STUDY QUESTION: What was the performance of different pretreatment prediction models for IVF, which were developed based on UK/US population (McLernon 2016 model, Luke model, Dhillon model, and McLernon 2022 model), in wider populations? SUMMARY ANSWER: For a patient in China, the published pretreatment prediction models based on the UK/US population provide similar discriminatory power with reasonable AUCs and underestimated predictions. WHAT IS KNOWN ALREADY: Several pretreatment prediction models for IVF allow patients and clinicians to estimate the cumulative probability of live birth in a cycle before the treatment, but they are mostly based on the population of Europe or the USA, and their performance and applicability in the countries and regions beyond these regions are largely unknown. STUDY DESIGN, SIZE, DURATION: A total of 26 382 Chinese patients underwent oocyte pick-up cycles between January 2013 and December 2020. PARTICIPANTS/MATERIALS, SETTING, METHODS: UK/US model performance was externally validated according to the coefficients and intercepts they provided. Centre-specific models were established with XGboost, Lasso, and generalized linear model algorithms. Discriminatory power and calibration of the models were compared as the forms of the AUC of the Receiver Operator Characteristic and calibration curves. MAIN RESULTS AND THE ROLE OF CHANCE: The AUCs for McLernon 2016 model, Luke model, Dhillon model, and McLernon 2022 model were 0.69 (95% CI 0.68-0.69), 0.67 (95% CI 0.67-0.68), 0.69 (95% CI 0.68-0.69), and 0.67 (95% CI 0.67-0.68), respectively. The centre-specific yielded an AUC of 0.71 (95% CI 0.71-0.72) with key predictors including age, duration of infertility, and endocrine parameters. All external models suggested underestimation. Among the external models, the rescaled McLernon 2022 model demonstrated the best calibration (Slope 1.12, intercept 0.06). LIMITATIONS, REASONS FOR CAUTION: The study is limited by its single-centre design and may not be representative elsewhere. Only per-complete cycle validation was carried out to provide a similar framework to compare different models in the sample population. Newer predictors, such as AMH, were not used. WIDER IMPLICATIONS OF THE FINDINGS: Existing pretreatment prediction models for IVF may be used to provide useful discriminatory power in populations different from those on which they were developed. However, models based on newer more relevant datasets may provide better calibrations. STUDY FUNDING/COMPETING INTEREST(S): This work was supported by the National Natural Science Foundation of China [grant number 22176159], the Xiamen Medical Advantage Subspecialty Construction Project [grant number 2018296], and the Special Fund for Clinical and Scientific Research of Chinese Medical Association [grant number 18010360765]. TRIAL REGISTRATION NUMBER: N/A.


Subject(s)
Fertilization in Vitro , Infertility , Pregnancy , Female , Humans , Fertilization in Vitro/methods , Infertility/therapy , Live Birth , Linear Models , Europe , Birth Rate , Retrospective Studies
16.
Int J Biol Macromol ; 257(Pt 1): 128536, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38061522

ABSTRACT

CpG oligodeoxynucleotides (ODNs) strongly activate the immune system after binding to toll-like receptor 9 (TLR9) in lysosome, which demonstrated significant potential in cancer immunotherapy. However, their therapeutic efficacy is limited by drawbacks such as rapid degradation and poor cellular uptake. Although encouraging progress have been made on developing various delivery systems for CpG ODNs, safety risks of the synthetic nanocarriers as well as the deficient CpG ODNs release within lysosome remain big obstacles. Herein, we developed a novel nanovector for lysosome-targeted CpG ODNs delivery and enhanced cancer immunotherapy. Natural glycogen was simply aminated (NH2-Gly) through grafting with diethylenetriamine (DETA), which was spherical in shape with diameter of approximately 40 nm. NH2-Gly possessed good biocompatibility. Cationic NH2-Gly complexed CpG ODNs well and protected them from nuclease digestion. NH2-Gly significantly enhanced the cellular uptake of CpG ODNs. Efficient CpG ODNs release was observed in the presence of α-glucosidase that mimicking the environment of lysosome. Consequently, NH2-Gly/CpG complexes triggered potent antitumor immunity and effectively inhibit the tumor growth without causing any toxic effect or tissue damages. This work highlights the promise of glycogen for lysosome-targeted on-command delivery of CpG ODNs, which brings new hope for precision cancer immunotherapy.


Subject(s)
Adjuvants, Immunologic , Neoplasms , Humans , Adjuvants, Immunologic/pharmacology , Oligodeoxyribonucleotides/pharmacology , Oligodeoxyribonucleotides/chemistry , Lysosomes , Immunotherapy , Neoplasms/drug therapy
17.
Chemistry ; 30(9): e202303568, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38061996

ABSTRACT

Selected gold complexes have been regarded as promising anti-cancer agents because they can bind with protein targets containing thiol or selenol moieties, but their clinical applications were hindered by the unbiased binding towards off-target thiol-proteins. Recently, a novel gold(III)-hydride complex (abbreviated as 1) with visible light-induced thiol reactivity has been reported as potent photo-activated anticancer agents (Angew. Chem. Int. Ed., 2020, 132, 11139). To explore new strategies to stimuli this potential antitumor drug, the effect of oriented external electric fields (OEEFs) on its geometric structure, electronic properties, and chemical reactivity was systematically investigated. Results reveal that imposing external electric fields along the Au-H bond of 1 can effectively activate this bond, which is conducive to its dissociation and the binding of Au site to potential targets. Hence, this study provides a new OEEF-strategy to activate this reported gold(III)-hydride, revealing its potential application in electrochemical therapy. We anticipate this work could promote the development of more electric field-activated anticancer agents. However, further experimental research should be conducted to verify the conclusions obtained in this work.


Subject(s)
Antineoplastic Agents , Gold , Gold/chemistry , Antineoplastic Agents/chemistry , Electricity , Sulfhydryl Compounds
18.
J Assist Reprod Genet ; 41(2): 347-358, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38040894

ABSTRACT

PURPOSE: To evaluate the contribution of the cleavage stage morphological parameters to the prediction of blastocyst transfer outcomes. METHODS: A retrospective study was conducted on 8383 single-blastocyst transfer cycles including 2246 fresh and 6137 vitrified-warmed cycles. XGboost, LASSO, and GLM algorithms were employed to establish models for assessing the predictive value of the cleavage stage morphological parameters in transfer outcomes. Four models were developed using each algorithm: all-in model with or without day 3 morphology and embryo quality-only model with or without day 3 morphology. RESULTS: The live birth rate was 48.04% in the overall cohort. The AUCs of the models with the algorithm of XGboost were 0.83, 0.82, 0.63, and 0.60; with LASSO were 0.66, 0.66, 0.61, and 0.60; and with GLM were 0.66, 0.66, 0.61, and 0.60 respectively. In models 1 and 2, female age, basal FSH, peak E2, endometrial thickness, and female BMI were the top five critical features for predicting live birth; In models 3 and 4, the most crucial factor was blastocyst formation on D5 rather than D6. In model 3, incorporating cleavage stage morphology, including early cleavage, D3 cell number, and fragmentation, was significantly associated with successful live birth. Additionally, the live birth rates for blastocysts derived from on-time, slow, and fast D3 embryos were 49.7%, 39.5%, and 52%, respectively. CONCLUSIONS: The value of cleavage stage morphological parameters in predicting the live birth outcome of single blastocyst transfer is limited.


Subject(s)
Embryo Transfer , Live Birth , Pregnancy , Female , Humans , Retrospective Studies , Embryonic Development , Birth Rate , Blastocyst , Pregnancy Rate
19.
Gene ; 895: 148007, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-37981080

ABSTRACT

Pancreatic cancer (PC) is one of the most malignant tumors with a dismal survival rate, this is primarily due to inevitable chemoresistance. Dysfunctional tyrosine kinases (TKs) and long non-coding RNAs (lncRNAs) affect the drug resistance and prognosis of PC. Here, we summarize the mechanisms by which TKs or lncRNAs mediate drug resistance and other malignant phenotypes. We also discuss that lncRNAs play oncogenic or tumor suppressor roles and different mechanisms including lncRNA-proteins/microRNAs to mediate drug resistance. Furthermore, we highlight that lncRNAs serve as upstream regulators of TKs mediating drug resistance. Finally, we display the clinical significance of TKs (AXL, EGFR, IGF1R, and MET), clinical trials, and lncRNAs (LINC00460, PVT1, HIF1A-AS1). In the future, TKs and lncRNAs may become diagnostic and prognostic biomarkers or drug targets to overcome the drug resistance of PC.


Subject(s)
MicroRNAs , Pancreatic Neoplasms , RNA, Long Noncoding , Humans , RNA, Long Noncoding/genetics , Protein-Tyrosine Kinases/genetics , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , MicroRNAs/genetics , Drug Resistance, Neoplasm/genetics , Gene Expression Regulation, Neoplastic
SELECTION OF CITATIONS
SEARCH DETAIL
...